jueves, 10 de abril de 2008

COLESTEROL





Colesterol


Síntesis del colesterol
El colesterol es un
lípido que se encuentra en los tejidos corporales y en el plasma sanguíneo de los vertebrados. Se presenta en altas concentraciones en el hígado, médula espinal, páncreas y cerebro. El nombre de «colesterol» procede del griego kole (bilis) y stereos (sólido), por haberse identificado por primera vez en los cálculos de la vesícula biliar por Michel Eugène Chevreul quien le dio el nombre de «colesterina».
Estructura química
Es un lípido
esteroide, molécula de ciclopentanoperhidrofenantreno (o ester), constituida por cuatro carbociclos condensados o fundidos, denominados A, B, C y D, que presentan varias sustituciones:
Dos
radicales metilo en las posiciones C-10 y C-13.
Una
cadena no metálica en la posición C-17.
Un
grupo hidroxilo en la posición C-3.
Una insaturación entre los carbonos C-5 y C-6.
En la molécula de colesterol se puede distinguir una cabeza polar constituida por el grupo hidroxilo y una cola o porción apolar formada por el carbociclo de núcleos condensados y los sustituyentes
alifáticos. Así, el colesterol es una molécula tan hidrófoba que la solubilidad de colesterol libre en agua es de 10-8 M y, al igual que los otros lípidos, es bastante soluble en disolventes apolares como el cloroformo (CCl4).

Fuentes de colesterol
Los organismos mamíferos obtienen colesterol a través de dos vías:
1. Vía exógena o absorción de colesterol pre-existente en los
alimentos. El colesterol se encuentra exclusivamente en los alimentos de origen animal, mayoritariamente la yema de huevo, hígado, lácteos, cerebro (sesos) y músculo esquelético (carnes rojas).
2. Vía endógena o síntesis de novo, es la síntesis de colesterol en las células animales a partir de su precursor, el acetato, en su forma activada acetil-coenzima A

Síntesis de colesterol
La biosíntesis del colesterol tiene lugar en el
retículo endoplásmico (liso) de virtualmente todas las células de los animales vertebrados. Mediante estudios de marcaje isotópico, D. Rittenberg y K. Bloch demostraron que todos los átomos de carbono del colesterol proceden, en última instancia, del acetato, en forma de acetil-Coenzima A. Se requirieron aproximadamente otros 30 años de investigación para describir las líneas generales de la biosíntesis del colesterol, desconociéndose, sin embargo, muchos detalles enzimáticos y mecanísticos a la fecha. Los pasos principales de la síntesis de colesterol son:
El acetil-CoA se convierte en
mevalonato.
El mevalonato se convierte en
escualeno mediante reacciones sucesivas de transferencia de grupos prenilo.
El escualeno se transforma en
lanosterol.
El lanosterol se convierte en colesterol después de otras 21 reacciones sucesivas, enzimáticamente catalizadas.

Transporte del colesterol
Debido a su gran insolubilidad en agua el colesterol circula en la sangre exclusivamente asociado a complejos macromoleculares conocidos como
lipoproteínas.

Regulación del colesterol
La producción de colesterol es regulada directamente por la concentración del colesterol presente en el
retículo endoplásmico de las células, habiendo una relación indirecta con los niveles plasmáticos de colesterol presente en las lipoproteínas de baja densidad (LDL por su acrónimo inglés). Una alta ingesta de colesterol en los alimentos conduce a una disminución neta de la producción endógena y viceversa. El principal mecanismo regulador de la homeostasis de colesterol celular aparentemente reside en un complejo sistema molecular centrado en las proteínas SREBPs (Sterol Regulatory Element Binding Proteins 1 y 2: proteínas que se unen a elementos reguladores de esteroles). En presencia de una concentración crítica de colesterol en la membrana del retículo endoplásmico, las SREBPs establecen complejos con otras dos importantes proteínas reguladoras: SCAP (SREBP-cleavage activating protein: proteína activadora a través del clivaje de SREBP) e Insig (insulin induced gene) 1 y 2. Cuando disminuye la concentración del colesterol en el retículo endoplásmico, las Insigs se disocian del complejo SREBP-SCAP, permitiendo que el complejo migre al aparato de Golgi, donde SREBP es escindido secuencialmente por S1P y S2P (site 1 and 2 proteases: proteasas del sitio 1 y 2 respectivamente). El SREBP escindido migra al núcleo celular donde actúa como factor de transcripción uniéndose al SRE (Sterol Regulatory Element: elemento regulador de esteroles) de una serie de genes relevantes en la homeostasis celular y corporal de esteroles, regulando su transcripción. Entre los genes regulados por el sistema Insig-SCAP-SREBP destacan los del receptor de lipoproteínas de baja densidad (LDLR) y la hidroxi-metil-glutaril CoA-reductasa (HMG-CoA-reductasa), la enzima limitante en la vía biosintética del colesterol.
Tras dilucidar los mecanismos celulares de captación endocítica de colesterol lipoproteico, trabajo por el cual fueron galardonados con el
premio Nobel en fisiología y medicina en el año 1985, Michael S. Brown y Joseph L. Goldstein han participado directamente en el descubrimiento y caracterización de la vía de los SREBPs de regulación del colesterol corporal. Estos avances han sido la base del mejor entendimiento de la fisiopatología de diversas enfermedades humanas, fundamentalmente la enfermedad vascular aterosclerótica, principal causa de muerte en el mundo occidental a través del infarto agudo al miocárdio y los accidentes cerebrovasculares y el fundamento de la farmacología de las drogas hipocolesteromiantes más potentes: las estatinas.

Funciones del colesterol
El colesterol es imprescindible para la vida por sus numerosas funciones:
Estructural: el colesterol es un componente muy importante de las
membranas plasmáticas de los animales (no existe en los vegetales). Aunque el colesterol se encuentra en pequeña cantidad en las membranas celulares, en la membrana citoplasmática lo hallamos en una proporción molar 1:1 con relación a los fosfolípidos, regulando sus propiedades físico-químicas, en particular la fluidez. Sin embargo, el colesterol se encuentra en muy baja proporción o está prácticamente ausente en las membranas subcelulares.
Precursor de la
vitamina D: esencial en el metabolismo del calcio.
Precursor de las
hormonas sexuales: progesterona, estrógenos y testosterona.
Precursor de las hormonas corticoesteroidales:
cortisol y aldosterona.
Precursor de las
sales biliares: esenciales en la absorción de algunos nutrientes lipídicos y vía principal para la excreción de colesterol corporal.
Precursor de las
balsas de lípidos...

No hay comentarios: